
1Benjamin C. Pierce

Software Research:
Where do we go from here?

Benjamin C. Pierce
University of Pennsylvania

SDP Workshop, 18-19 April 2001

2Benjamin C. Pierce

We’re not doing so badly…

• Present-day software engineering is actually
astonishingly successful. Yes, we complain
about cost, bugs, etc., but we are routinely
building and using software systems of a size and
complexity that could scarcely have been
believed 20 years ago.

• How did we do this?

By applying lots and lots of good ideas

3Benjamin C. Pierce

But we can’t stop here!

• Does this mean we have “solved the software
crisis”?

Of course not: there was never just one software crisis.

• As our capabilities grow, so do our appetites

4Benjamin C. Pierce

Some new problem areas

• Dynamically Assembled Software
– Plug-ins and friends
– Software leasing
– Mobile agents

• Worldwide file sharing
– Massive replication

• Interfacing security infrastructure(s) and application
programs

• Concurrent / distributed programming “for the masses,
by the masses”

5Benjamin C. Pierce

How Formal?
Impractical for most applications,
but rich source of powerful
concepts (invariants, pre-/post-
conditions, rely/guarantee,
serializability, etc.

• Formal methods
– Hoare logic
– Relational calculus
– Process calculi

• “Lightweight” formal methods
– Type systems
– Model checking
– Run-time monitoring

• Pseudo-formal methods
– UML

• Informal methods
– Design patterns
– Extreme programming

Big bang for buck

Surprisingly effective…

95% of benefit is obtained by
attempting to formalize software
designs; succeeding not especially
important!

Also very effective… “Mining
the expertise of good
programmers and managers”

6Benjamin C. Pierce

Lightweight Formal Methods
Formal methods will never make a difference until they can be used by
people that do not understand them. ---Tom Melham

• Types
– Capture simple “contracts” between components and their

environments
– Conformance is checked automatically every time the program is

compiled
– Challenge: Can we engineer powerful type systems to make

them useful in a highly dynamic environment? (Cf. proof-
carrying code)

• Model checking
– Very helpful in expositing flaws in hardware designs
– Challenge: Can we do something similar for software?

• Run-time monitoring
– Identify components that actually misbehave in real time,

instead of detecting those that might in advance
• Need more techniques like these!

7Benjamin C. Pierce

Research Agenda

I. Nurture foundations
Moderate number of small projects (1-2 PI)

II. Encourage experimentation
Many small-to-medium-sized efforts (1-5 PI)

III. Stress-test promising ideas
Small number of larger projects (4-15 PI)

Good ideas in software often take a long time
to mature.

E.g. garbage collection…
Invented in the late ‘50s
Gained widespread acceptance in the mid ‘90s!

	Software Research:Where do we go from here?
	We’re not doing so badly…
	But we can’t stop here!
	Some new problem areas
	How Formal?
	Lightweight Formal Methods
	Research Agenda

